十个Python小技巧,覆盖了90%的数据分析需求!

时间:2022-03-09 15:30 来源:经济导报网   阅读量:15471   
十个Python小技巧,覆盖了90%的数据分析需求!

数据分析师日常工作会涉及各种任务,比如数据预处理、数据分析、机器学习模型创建、模型部署。

在本文中,我将分享10个 Python 操作,它们可覆盖90%的数据分析问题。有所收获点赞、收藏、关注。

1、阅读数据集

阅读数据是数据分析的组成部分,了解如何从不同的文件格式读取数据是数据分析师的第一步。下面是如何使用 pandas 读取包含 Covid-19 数据的 csv 文件的示例。

import pandas as pd # reading the countries_data file along with the location within read_csv function.countries_df = pd.read_csv # showing the first 5 rows of the dataframe countries_df.head()

以下是 countries_df.head 的输出,我们可以使用它查看数据框的前 5 行:

2、汇总统计

下一步就是通过查看数据汇总来了解数据,例如 NewConfirmed、TotalConfirmed 等数字列的计数、均值、标准偏差、分位数以及国家代码等分类列的频率、最高出现值

countries_df.describe

使用 describe 函数,我们可以得到数据集连续变量的摘要,如下所示:

在 describe 函数中,我们可以设置参数"include = 'all'"来获取连续变量和分类变量的摘要

countries_df.describe

3、数据选择和过滤

分析其实不需要数据集的所有行和列,只需要选择感兴趣的列并根据问题过滤一些行。

例如,我们可以使用以下代码选择 Country 和 NewConfirmed 列:

countries_df)

我们还可以将数据过滤Country,使用 loc,我们可以根据一些值过滤列,如下所示:

countries_df.loc 'United States of America')

4、聚合

计数、总和、均值等数据聚合,是数据分析最常执行的任务之一。

我们可以使用聚合找到各国的 NewConfimed 病例总数。使用 groupby 和 agg 函数执行聚合。

countries_df.groupby).agg('NewConfirmed':'sum')5、Join

使用 Join 操作将 2 个数据集组合成一个数据集。

例如:一个数据集可能包含不同国家/地区的 Covid-19 病例数,另一个数据集可能包含不同国家/地区的纬度和经度信息。

现在我们需要结合这两个信息,那么我们可以执行如下所示的连接操作

countries_lat_lon = pd.read_excel# joining the 2 dataframe : countries_df and countries_lat_lon# syntax : pd.merge(left_df, right_df, on = 'on_column', how = 'type_of_join')joined_df = pd.merge(countries_df, countries_lat_lon, on = 'CountryCode', how = 'inner')joined_df6、内建函数

了解数学内建函数,如 min、max、mean、sum 等,对于执行不同的分析非常有帮助。

我们可以通过调用它们直接在数据帧上应用这些函数,这些函数可以在列上或在聚合函数中独立使用,如下所示:

# finding sum of NewConfirmed cases of all the countries countries_df.sum()# Output : 6,631,899# finding the sum of NewConfirmed cases across different countries countries_df.groupby(('Country')).agg('NewConfirmed':'sum')# Output # NewConfirmed#Country #Afghanistan 75#Albania 168#Algeria 247#Andorra 0#Angola 537、用户自定义函数

我们自己编写的函数是用户自定义函数。我们可以在需要时通过调用该函数来执行这些函数中的代码。例如,我们可以创建一个函数来添加 2 个数字,如下所示:

# User defined function is created using 'def' keyword, followed by function definition - 'addition'# and 2 arguments num1 and num2def addition(num1, num2): return num1+num2# calling the function using function name and providing the arguments print(addition(1,2))#output : 38、Pivot

Pivot 是将一列行内的唯一值转换为多个新列,这是很棒的数据处理技术。

在 Covid-19 数据集上使用 pivot_table 函数,我们可以将国家名称转换为单独的新列:

# using pivot_table to convert values within the Country column into individual columns and # filling the values corresponding to these columns with numeric variable - NewConfimed pivot_df = pd.pivot_tablepivot_df9、遍历数据框

很多时候需要遍历数据框的索引和行,我们可以使用 iterrows 函数遍历数据框:

# iterating over the index and row of a dataframe using iterrows function for index, row in countries_df.iterrows: print('Index is ' + str(index)) print('Country is '+ str(row('Country'))) # Output : # Index is 0# Country is Afghanistan# Index is 1# Country is Albania# .......10、字符串操作

很多时候我们处理数据集中的字符串列,在这种情况下,了解一些基本的字符串操作很重要。

例如如何将字符串转换为大写、小写以及如何找到字符串的长度。

# country column to upper casecountries_df = countries_df('Country').str.upper()# country column to lower casecountries_df('CountryCode_lower')=countries_df('CountryCode').str.lower()# finding length of characters in the country column countries_df('len') = countries_df('Country').str.len()countries_df.head()

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。